Простая мигалка на 220 вольт на тиристоре. Как сделать мигающий светодиод

Радиолюбителю Светотехника

Мигалка на лампе накаливания

Это простое устройство содержит немного деталей, причём их большую часть (транзистор, динистор, диоды) можно извлечь из электронного пускорегулирующего аппарата (ЭПРА) вышедшей из строя энергосберегающей компактной люминесцентной лампы (разумеется, эти элементы должны быть исправными). Оно рассчитано на работу с лампой накаливания на напряжение 220 В мощностью до нескольких десятков ватт. Несколько таких устройств, особенно если они будут вспыхивать разным цветом, украсят домашний праздник, дискотеку, новогоднюю ёлку и т. д.

Схема мигалки показана на рис. 1. Она состоит из мостового выпрямителя на диодах VD1-VD4, релаксационного генератора, собранного на симметричном динистореVs1 и элементах R1, С1, и электронного ключа на транзисторе VT1 в цепи питания лампы накаливания EL1. Резистор R2 - токоограничиваю-щий. После подключения к сети начинается зарядка конденсатора С1, и когда напряжение на нём становится равным напряжению открывания динистора VS1, конденсатор быстро разряжается через резистор R2 и эмиттерный переход транзистора VT1. Открываясь, он подключает лампу EL1 к выпрямителю и она вспыхивает.

Длительность вспышек зависит от ёмкости конденсатора C1 и сопротивления резистора R2, а период их следования - от ёмкости этого конденсатора и сопротивления резистора R1 (при указанных на схеме номиналах - несколько секунд). Иными словами, эти параметры устройства взаимосвязаны.

Уменьшение сопротивления резистора R2 ведёт к уменьшению длительности вспышки, но если она окажется слишком короткой, нить лампы не успеет разогреться. Кроме того, сопротивление резистора R2 должно быть не менее 24.30 Ом, иначе динистор и транзистор будут работать с превышением максимально допустимого тока.

Все детали мигалки монтируют на печатной плате (рис. 2) из фольгиро-ванного стеклотекстолита толщиной 1.1,5 мм. Резисторы - любые малогабаритные (МЛТ, Р1-4, С2-23), конденсатор - оксидный импортный. Для подключения галогенной лампы со штыревыми выводами (например, в корпусе GU4 или аналогичном), на плате непосредственно к печатным проводникам припаивают гнёзда XS1 и XS2 (от разъёма 2РМ или другого подходящего). Внешний вид смонтированной платы с такой лампой показан на рис. 3. Поскольку все элементы гальванически связаны с сетью, устройство помещают в прозрачный пластмассовый корпус подходящих размеров. Окрасив его цветным прозрачным лаком, можно получить мигалку соответствующего цвета.

В заключение следует отметить, что импульсный режим работы ламп накаливания сокращает срок их службы, поэтому не удивляйтесь, если мигалка перестанет вспыхивать раньше окончания гарантийного срока эксплуатации установленной в ней лампы.

В этом разделе собраны схемы генераторов световых импульсов или если сказать проще- мигалок. Их можно устанавливать на детские игрушки, использовать в аттракционах, размещать на видном месте в салоне автомобиля для имитации действия сторожевого устройства.

схемы мигалок на тиристорах

Сравнительно простые "мигалки" получаются при использовании тринисторов. Правда, особенность работы большинства тринисторов заключается в том, что они открываются при подаче на управляющий электрод определенного напряжения (тока), а для их закрывания необходимо уменьшить анодный ток до значения ниже тока удержания.


Кстати: что такое тиристор и как его проверить можно почитать

Если питать тринистор от источника переменного или пульсирующего напряжения, он будет автоматически закрываться при прохождении тока через ноль. При питании же от источника постоянного напряжения тринистор просто так закрываться не станет, придется использовать специальные технические решения.

Схема одного из вариантов "мигалки" на тринисторах приведена на рис. 1. Устройство содержит генератор коротких импульсов на однопереходном транзисторе VT1 и два каскада на тринисторах. В анодную цепь одного из тринисторов (VS2) включена лампа накаливания EL1.

Работает устройство так. В начальный момент после подачи питания оба тринистора закрыты и лампа не горит. Генератор вырабатывает короткие мощные импульсы с интервалом, определяемым параметрами цепочки R1C1. Первый же импульс поступит на управляющие электроды тринисторов, и они откроются. Лампа зажжется.

За счет тока, протекающего через лампу, тринистор VS2 останется открытым, а вот VS1 закроется, так как его анодный ток, определяемый резистором R2, слишком мал. Конденсатор С2 начнет заряжаться через этот резистор и к моменту появления второго импульса генератора окажется заряженным. Этот импульс приведет к открыванию тринистора VS1, и левый по схеме вывод конденсатора С2 будет кратковременно подключен к катоду тринистора VS2. Но даже такого подключения достаточно, чтобы тринистор закрылся и лампа погасла.

Таким образом, оба тринистора окажутся закрытыми, конденсатор С2 разрядится. Следующий импульс генератора приведет к открыванию тринисторов, описанный процесс повторится. Лампа вспыхивает с частотой, вдвое меньшей частоты генератора.

Для указанных на схеме элементов можно использовать лампу накаливания (либо несколько ламп, включенных последовательно или параллельно) с током до 0,5 А. Если использовать все возможности указанных тринисторов, допустимо применить лампу, потребляющую ток до 5 А. В этом случае для надежного закрывания тринистора VS2 емкость конденсатора С2 надо увеличить до 330...470 мкф. Соответственно придется увеличить емкость конденсатора С1, чтобы в периоды между импульсами генератора конденсатор С2 успевал зарядиться. Тринистор VS2 следует разместить на небольшом радиаторе.

Детали "мигалки" монтируют на печатной плате(рис. 2) из одностороннего фольгированного гетинакса или стеклотекстолита. Оксидный конденсатор С2 - обязательно алюминиевый, серий К50-6, К50-16,К50-35.

Если ток лампы не превышает 0,5 А, один из тринисторов можно заменить на маломенее мощный, например, КУ101А (на рис. 3 VS1). Поскольку напряжения на управляющих электродах тринисторов, при которых они открываются, различны, в устройство введен подстроечный резистор R2, с помощью которого подбирают оптимальный режим их работы. Кроме того, увеличивают сопротивление резистора (R3) в цепи анода тринистора VS1.

Правда тогда немного изменится печатная плата. Выглядеть она будет уже так:


Налаживание конструкций сводится к установке требуемой частоты "миганий" лампы подбором конденсатора С1. Если лампа накаливания загорается, но не гаснет, значит, либо тринистор VS1 не закрывается (следует увеличить сопротивление резистора R2 в первой "мигалке" или R3 во второй), либо не успевает зарядиться конденсатор С2. Тогда желательно уменьшить его емкость, а еще лучше - частоту переключении. Во второй "мигалке" нужно установить движок подстроечного резистора в такое положение, при котором устойчиво срабатывают оба тринистора.

Дополнительные полезные материалы:

:: КАК СДЕЛАТЬ МИГАЛКУ::. Мигалка своими руками на 220 вольт

Схема мощной мигалки

Схема мощной мигалки

Потребовалось в замен негодному механическому реле, достаточно мощному, соорудить похожее по размерам, но уже электронное. Так как со временем контакты реле обгорают и устройство перестаёт работать. Единственная проблема, стоящая в процессе переделки, была такая, что реле должно стоять в разрыве плюсового провода, и выдерживать значительную мощность. Но использование более мощного транзистора, например КТ819, так-же не привело к желаемому результату. Слишком большое количесто тепла выделялось транзистором при коммутации 50 ватт. Спасение было только одно - использование радиатора, но из-за ограниченного пространства, затея отпала сама собой. Было принято решение использовать в качестве ключа полевой транзистор. Для этого пришлось немного доработать схему и добавить резистор R4, ввиду того, что транзистор имеет боьшое входное сопротивление изолированного N-канала. Подбирается данный резистор в большую или меньшую сторону, визуально контролируя чёткое переключение ламп. Схему и описание читаем здесь

elwo.ru

Сразу, оговорюсь, идея не моя, она была взята на сайте chipdip.ru. Это простая мигалка на 6 светодиодах, особенностью которой является полное отсутствие дополнительных активных управляющих элементов (транзисторы, микросхемы).

Основой устройства является мигающий светодиод красного свечения HL3 последовательно, с которым включено два обычных красных светодиода HL1 и HL2. Когда вспыхивает мигающий светодиод HL3, вместе с ним загораются и светодиоды HL1 и HL2.

При этом открывается диод VD1, который шунтирует зеленые светодиоды HL4-HL6, которые при этом гаснут.

Когда мигающий светодиод HL3 гаснет, вместе с ним гаснут светодиоды HL1 и HL2, при этом загорается группа зеленых светодиодов HL4-HL6.

Затем весь цикл повторяется. Более подробно вы можете посмотреть про мигалку на этом видео:

Простая мигалка

Устройство питается от батареи типа «Крона» напряжением 9 В. Резисторы типа МЛТ-0,125, R1 100 Ом, R2 300 Ом. В первоисточнике использован диод VD1 типа КД522, он был заменен на Д220. Светодиоды могут быть любыми на напряжение 2,5-3 В, и ток 10-30 мА. С уважением, Лекомцев Д. Г.

samodelnie.ru

ТРЁХФАЗНЫЙ МУЛЬТИВИБРАТОР

Недавно в интернете была найдена схема очень интересного мультивибратора. Этот мультивибратор не обычный, а на три канала. Как правило, эл.схема мультивибратора строится на двух транзисторах, и предназначен он для получения прямоугольных импульсов.

Мультивибратор - очень простое устройство, служит основой для генерации импульсов. Нашел он широкое применение в радиолюбительских кругах. Начинающий радиолюбитель, после освоения теоретической части электроники приступает из теории к делу. Самой первой конструкцией новичков является мигалка на двух светодиодах, и основа такой мигалки - мультивибратор.

Рассматриваемый мультивибратор имеет три канала, которые открываются поочередно. Весь монтаж был выполнен на макетной плате, притом со значительными разбросами. В схеме использованы маломощные транзисторы КТ315, можно также использовать более мощные отечественные транзисторы, к примеру КТ815, КТ817 и даже КТ819. Выбор очень велик, можно использовать буквально любые транзисторы прямой или обратной проводимости,

Лично паял схему в 3 часа ночи, поэтому она заработала с третьего раза, вечно путал подключение электролитических конденсаторов (видно не стоило работать так поздно), затем сжег 2 транзистора, пришлось идти в кладовую за новыми...

Чтобы не повторять мои ошибки, следует тщательно проверить весь монтаж, особое внимание нужно уделить на подключение электролитических конденсаторов. Напряжение питания подбирается в районе 4...6 вольт, хотя и от "кроны" 9В работает неплохо.

Желательно подобрать разноцветные светодиоды с одинаковыми параметрами. Можно использовать буквально любые светодиоды малой мощности.

Не знаю, где можно использовать такой мультивибратор кроме схем мигалок и гирлянд (может изобрести трехтактный преобразователь с таким генератором?). Но по крайней мере это будет отличной электронной новогодней игрушкой для вашего ребенка или младшего брата:) Схему собрал и испытал - АКА КАСЬЯН.

Форум по схемотехнике для начинающих

Обсудить статью ТРЁХФАЗНЫЙ МУЛЬТИВИБРАТОР

radioskot.ru

Бывает сильная надобность заставить светодиод мигать, для усиления привлечения внимания человека к сигналу. Но делать сложную схему просто нет времени и места для размещения радиоэлементов. Я покажу вам схему, состоящую всего из трех, которая заставит светодиод моргать.

Схема хорошо работает от 12 вольт, что должно заинтересовать автомобилистов. Если брать полный диапазон питающего напряжение, то он лежит в пределах 9-20 вольт. Так что применений данное устройство может найти массу.


Это по истине супер простая схема, чтобы обеспечить мигание светодиода. Конечно в схеме присутствует большой электролитический конденсатор, который может украсть много места, но это проблему можно просто решить воспользовавшись современной элементной базой, типа SMD конденсатором.


Обратите внимание, что база транзистора висит в воздухе. Это не ошибка, а конструкция схемы. База не используется, так как в работе используется обратная проводимость транзистора.



Такую мигалку можно собрать навесным монтажом минут за пятнадцать. Одеть термоусадочную трубку и обдуть термофеном. И вот у вас получился генератор мигания светодиодам. Частоту мигания можно изменить увеличивая или уменьшая емкость конденсатора. Схема не нуждается в настройке и работает сразу при исправных элементах схемы.
Мигалка очень экономична в работе, надежна и неприхотлива.