Инициирование цепи. Инициирование радикальной полимеризации

В радикальной полимеризации функции активных промежуточных продуктов (активных центров) выполняют свободные радикалы. В радикальную полимеризацию вступают мономеры с кратной С=С-связыо и мономеры с поляризованной кратной связью С=гетероатом. Циклические мономеры радикальной полимеризации не подвергаются.

К числу распространенных мономеров, вступающих в радикальную полимеризацию, относятся этилен, винилхлорид, винилацетат, винилиден- хлорид, тетрафторэтилен, акрилонитрил, метакрилонитрил, метилакрилат, метилметакрилат, стирол, бутадиен, хлоропрен и др. Перечисленные мономеры образуют высокомолекулярные продукты, в то время как виниловые эфиры и аллиловые мономеры образуют олигомеры. Виниленовые мономеры (СНХ=СПХ, за исключением X=F) в радикальную полимеризацию не вступают вследствие стерических затруднений.

Инициирование полимеризации - это превращение небольшой доли молекул мономера в активные центры (радикалы) под действием специально вводимых веществ (инициаторов) или излучения высоких энергий (радиационная полимеризация), или света (фотополимеризация) и др.

Наиболее распространенными методами инициирования являются термический гомолитический распад инициаторов, инициирование окислительно-восстановительными системами, фотохимическое инициирование, радиационное инициирование.

Термический гомолитический распад инициаторов осуществляется посредством инициаторов, к которым относятся различные типы перекисей: алкил- перекиси (перекись трет- бутила), гидроперекиси (гидроперекись кумола), перэфиры (от/д?ти-6утилпербензоат), ацилперекиси (перекись бензоила)

и азосоединения, среди которых наибольшее распространение получил 2,2"-азо-бмс-изобутиронитрил (ДАК или АИБН)


Эти инициаторы обычно нс отличаются селективным действием но отношению к разным мономерам, поэтому выбор инициатора чаще всего обусловливается температурой, при которой в каждом конкретном случае может быть достигнута желаемая скорость генерирования свободных радикалов. Так, ДАК применяют при 50-70°С, перекись бензоила - при 80-95°С, а перекись трет- бутила - при 120-140°С. Энергия активации инициирования обычно близка к энергии связи, разрывающейся при распаде инициаторов, и колеблется в пределах 105-175 кДж/моль.

Полимеризацию при высоких температурах можно вызвать и без введения в систему специальных инициаторов. В этом случае образование радикалов происходит, как правило, вследствие разложения небольших количеств пе- рекисных примесей, которые часто образуются при взаимодействии мономера с кислородом воздуха, или других случайных примесей. Возможность термического самоинициирования доказана только для ограниченного круга мономеров (стирола и некоторых его производных, метилметакрилата и ряда других).

Инициирование окислительно-восстановительными системами имеет преимущество - возможность осуществления полимеризации в водной или органической среде при комнатной температуре.

Приведем типичные окислительно-восстановительные инициирующие системы:

(также вместо солей железа используют соли Cr 2+ , V 2+ , Ti 3+ , Со 2 ")

Недостатком окислительно-восстановительного инициирования является низкая эффективность инициирования.

Фотохимическое инициирование протекает под действием УФ-света. В этом случае радикал может возникнуть как в системе, содержащей чистый мономер, так и при фотолитической диссоциации инициатора или в системе, содержащей фотосенсибилизатор, например бензофенон. Скорость фотоинициирования пропорциональна количеству поглощенного света. Удобство этого способа инициирования заключается в том, что процесс полимеризации можно вести при комнатной температуре.

Радиационно-химическое инициирование (под действием излучения высокой энергии) вызывает радикальную полимеризацию при температуре выше 0°С, а при пониженных температурах чаще происходит ионная полимеризация. К достоинствам этого процесса можно отнести легкость регулирования мощности дозы и времени полимеризации и высокую чистоту образующегося полимера.

Энергия активации фотохимического и радиационно-химического инициирования близка к пулю. Особенностью двух последних способов ииициирования является возможность мгновенного включения и выключения облучающего излучения.

Инициирование включает два элементарных акта:

а) генерирование радикалов R" из ининиатопа I:

б) взаимодействие радикала R* с мономером М:

Здесь & и и k" H - кинетические константы реакций инициирования.

Из этих двух стадий в большинстве случаев лимитирующей является стадия гемолитического распада инициатора, т.е. реакция (а).

Часть радикалов R" может расходоваться на побочные реакции, для учета этого вводят параметр «эффективность инициирования»/, равный отношению числа радикалов, участвовавших в реакции (б), к числу радикалов, образовавшихся по реакции (а).

Рост цени осуществляется последовательным присоединением молекул мономера к радикалам, возникающим в результате инициирования, например:

где k p - константа скорости роста цепи.

Развитие кинетической цепи сопровождается образованием материальной цепи макрорадикала. Значение энергии активации реакций роста цепи лежит в пределах 10-40 кДж/моль.

Константы скорости и энергия активации Е а реакции роста цепи в первую очередь зависят от природы мономера. Растворители, не склонные к специфическим взаимодействиям с молекулами мономера и растущими радикалами, не влияют на реакцию роста цепи радикальной полимеризации.

Энергия активации присоединения мономера к радикалу гем ниже, т.е. мономер тем активнее, чем выше энергия сопряжения в радикале, который получается в результате присоединения этого мономера к исходному радикалу. Таким образом, реакционные способности в ряду мономеров и соответствующих им радикалов изменяются антибатно.

Реакционная способность виниловых мономеров с заместителями уменьшается в ряду:

где R - алкил.

Реакционная способность соответствующих радикалов уменьшается справа налево.

К активным мономерам относятся мономеры, у которых двойная связь сопряжена с ненасыщенной группой заместителя, т.е. с большой энергией сопряжения. У неактивных мономеров сопряжение отсутствует или его (сопряжения) энергия мала. Чем выше реакционная способность мономера, тем выше энергия активации реакции роста цепи, т.е. тем ниже скорость его радикальной полимеризации.

Обрыв цепи приводит к ограничению кинетической и материальной цепи, т.е. к гибели активного центра (исчезновению активного радикала или его замене малоактивным радикалом, неспособным присоединять молекулы мономера). Обрыв цепи при радикальной полимеризации в основном происходит при взаимодействии двух растущих радикалов в результате их рекомбинации-.


где А и к ОЛ - кинетические константы обрыва по механизму рекомбинации и диспропорционирования соответственно.

Реакция обрыва цепи протекает в три стадии:

  • 1) поступательная диффузия макрорадикалов с образованием объединенного клубка;
  • 2) взаимное сближение активных концевых звеньев за счет сегментальной диффузии внутри объединенного клубка;
  • 3) непосредственное химическое взаимодействие реакционных центров с образованием «мертвых» макромолекул.

Энергия активации реакции обрыва не превышает 6 кДж/моль и в основном определяется энергией активации взаимной диффузии радикалов.

В реакции обрыва цепи участвуют макрорадикалы разной длины, поэтому при полимеризации образуются макромолекулы разной длины (степени полимеризации). Конечный продукт полимеризации представляет собой полимер с широким молекулярно-массовым распределением.

Другой вариант обрыва цепи - обрыв на молекулах ингибитора. Ингибиторами могут быть малоактивные стабильные свободные радикалы (например, дифенилиикрилгидразил, N-оксидные радикалы), которые сами не инициируют полимеризацию, но способны рекомбинировать или диспро- порционировать с растущими радикалами. Ингибиторами также могут быть вещества, молекулы которых при взаимодействии с активными радикалами сами превращаются в малоактивные радикалы: это хиноны (бензо- хинон, дурохинон), ароматические ди- и тринитросоединения (например, динитробензол, тринитробензол), молекулярный кислород, сера и др. Ингибиторами служат также соединения металлов переменной валентности

(соли трехвалентного железа, двухвалентной меди и др.), которые обрывают растущие цепи за счет окислительно-восстановительных реакций. Часто ингибитор вводят в мономер для предотвращения его преждевременной полимеризации. Поэтому перед полимеризацией каждый мономер необходимо тщательно очищать от примесей и добавленного ингибитора.

В крайне редких случаях обрыв цепи может протекать мономолекуляр- но на стенках сосуда.

Передача цени также приводит к ограничению материальных цепей при полимеризации, но при этом активный центр не погибает, а переходит на другую молекулу. Реакции передачи цепи весьма характерны для радикальной полимеризации. Сущность этих реакций состоит в отрыве растущим радикалом атома или группы атомов от какой-либо молекулы (агента передачи цепи).

В качестве агента передачи цени может выступать специально добавленное к реакционной системе соединение с подвижным атомом или группой атомов, а также мономер, полимер или растворитель:


Здесь я м - кинетическая константа реакции передачи цепи на мономер; k u -кинетическая константа реакции передачи цепи на полимер; k s - кинетическая константа реакции передачи цепи на растворитель.

Отдельно следует отметить особенности полимеризации амиловых мономеров. В этом случае реакция передачи цепи на мономер с отрывом подвижного атома II в положении к двойной связи приводит к образованию резонансно-стабилизированного, неактивного аллильного радикала, не способного инициировать дальнейшую полимеризацию:

Аллильные радикалы рекомбинируют с образованием димеров. В этом случае, в отличие от обычной передачи, обрываются не только материальные, но и кинетические цени. Такой вид передачи получил название дегра- дационной передачи цепи. Деградационная передача, конкурируя с реакцией роста, приводит к крайне низким скоростям полимеризации аллиловых мономеров и образованию продуктов с невысокими молекулярными массами - олигомеров.

Склонность молекул мономеров участвовать в реакции передачи цепи принято характеризовать константой самопередачи С м, равной отношению константы скорости реакции передачи цепи на мономер k M к константе скорости реакции роста цепи k p:

Для большинства мономеров винилового ряда, не содержащих подвиж- н ых групп ил и атомов, k M k . Значение С ы обычно лежит в пределах 10" 4 -10 для аллиловых мономеров С м > 100 (табл. 5.6).

Таблица 5.6

Константы передачи при радикальной полимеризации

Способность растворителей участвовать в передачи цепи при радикальной полимеризации конкретного мономера характеризуют константой передачи-.

Реакции передачи цепи широко используются при синтезе полимеров для регулирования их молекулярных масс. Для уменьшения молекулярной массы синтезируемого полимера обычно применяют передатчики со значениями C s > 10 3 , которые называют регуляторами.

Кинетика радикальной полимеризации. Скорость инициирования при использовании термически распадающихся инициаторов можно выразить уравнением

где / - эффективность инициатора, которая обычно составляет от 0,5 до 1,0; ^р аспада - константа скорости распада инициатора; |1| - концентрация инициатора.

Скорость роста цепи V n выражается уравнением

где k-- константа скорости присоединения мономера к радикалу степени полимеризации г; | R* | - концентрация радикалов степени полимеризации г; [М] - концентрация молекул мономера.

Однако при образовании макромолекул большой молекулярной массы (степень полимеризации больше 5-10) можно считать, что k if) не зависит от степени полимеризации радикала. Тогда выражение для V p упрощается:

где | R* | - концентрация всех растущих радикалов.

С учетом допущения о том, что реакционная способность радикалов роста не зависит от степени их полимеризации, скорость исчезновения радикалов в результате реакции обрыва описывается уравнением

где k n - константа скорости обрыва.

Общая скорость полимеризации, равная скорости исчезновения мономера в системе, при условии, что степень полимеризации образующихся макромолекул достаточно велика и мономер расходуется только на полимеризацию, идентична скорости роста цепей, т.е.

Если в системе отсутствует ингибитор, то активные радикалы исчезают в результате их рекомбинации или диспропорционирования. В этом случае изменение концентрации радикалов описывается уравнением

Концентрацию радикалов , которую трудно измерить прямыми опытами, можно исключить из уравнения (5.10), приняв, что скорость образования радикалов равна скорости их исчезновения (условие квазистационарности), т.е. dR"]/dt = 0. При радикальной полимеризации это условие обычно выполняется уже через несколько секунд после начала реакции. Поэтому

В итоге получаем уравнение

Таким образом, допущения, необходимые и достаточные для вывода уравнения (5.11) скорости радикальной полимеризации, можно сформулировать следующим образом:

  • 1) степень полимеризации должна быть много больше единицы;
  • 2) константы элементарных стадий не зависят от степени полимеризации радикалов роста (принцип Флори);
  • 3) если время жизни активных частиц мало по сравнению со временем полимеризации, то используют принцип квазистациопарпости, согласно которому изменение концентрации макрорадикалов во времени равно нулю, т.е. скорость инициирования равна скорости обрыва цепи;
  • 4) процесс рассматривают на начальных конверсиях мономера.

Таким образом, порядок скорости реакции по концентрации мономера

составляет единицу, по концентрации инициатора - 0,5. Для того чтобы оценить влияние температуры на скорость полимеризации, рассмотрим суммарную энергию активации этого процесса. Эффективная константа скорости полимеризации

Тогда эффективная (суммарная) энергия активации процесса

Энергия активации реакции роста Е = HR40 кДж/моль, энергия активации реакции обрыва? 0 = (R6 кДж/моль, энергия активации реакции инициирования Е ИН = 105-Н75 кДж/моль для термического распада инициатора и Е нн = 0 для фото- или радиационного инициирования. Таким образом, в любом случае суммарная энергия активации реакции радикальной полимеризации положительна, и с ростом температуры скорость процесса возрастает.

Степень полимеризации. Из кинетических данных можно рассчитать длину кинетической цепи (v) и среднюю степень полимеризации (Р п) полученного полимера. Определим эти понятия.

Кинетическая цепь - число молекул мономера, приходящихся на один образовавшийся радикал R* до его гибели при обрыве цепи.

Таким образом, выражение для кинетической цепи имеет вид

При условии квазистационарности, используя уравнение (5.11), можно получить выражение

Материальная цепь (среднечисловая степень полимеризации) - число элементарных актов присоединения мономеров на один акт гибели радикала R’ при обрыве и передаче цепи.

При обрыве диспропорционированием (& од) одна макромолекула образуется из одной кинетической цепи, и длина материальной цепи равна длине кинетической цепи: Р п = v.

При обрыве рекомбинацией (&) одна макромолекула образуется из двух кинетических цепей, и Р п = 2v. При смешанном обрыве (& ор + к ол) длина материальной цепи также не совпадает с длиной кинетической цепи:

Выведем уравнение для степени полимеризации из кинетических данных. Если полимеризация протекает в условиях квазистационарности при отсутствии ингибитора, то при достаточно малой глубине превращения, когда полимера в системе еще мало и, следовательно, скоростью передачи цепи на полимер и расходом мономера можно пренебречь:

где V a - скорость бимолекулярного обрыва цепи; - сумма скоростей передачи цени на мономер М и растворитель S;

При рекомбинации двух радикалов образуется одна материальная цепь, т.е. происходит среднестатистическое удваивание Р п, поэтому в знаменателе уравнения (5.13) перед членом, соответствующим обрыву путем рекомбинации, необходимо учесть сомножитель 0,5. Если обозначить долю полимерных радикалов, обрывающихся по механизму диспропорционирования, X, то доля радикалов, гибнущих при рекомбинации, равна (1 - X) и уравнение для Р п примет вид

Тогда для величины, обратной Р п, получим

Выразив концентрацию радикала через скорость полимеризации и используя величины С м и C s , окончательно получаем

Полученное уравнение связывает среднечисловую степень полимеризации со скоростью реакции, константами передачи и концентрациями мономера и передающего агента. Из уравнения (5.15) следует, что степень полимеризации прямо пропорциональна концентрации мономера, обратно пропорциональна концентрации инициатора в степени 1/2, а максимальная степень полимеризации образующегося полимера при отсутствии других передающих агентов определяется реакцией передачи цепи на мономер (С м).

k" /2 k t и [I] 0 - текущая и начальная концентрации инициатора; t - время; K d - константа скорости реакции распада инициатора на свободные радикалы.

Задача. Определить константу скорости распада пероксида бензоила в диоксане при 80°С, если начальная концентрация его была 1,1%, а через 10 мин иодометрически в системе было обнаружено 1,07% пероксида бензоила.

Решение . Согласно уравнению (5.2),

ln = exp / Kd ) = 151,9 кДж/моль.

Оценка значений ΔE d позволяет выбрать наиболее целесообразную температурную область синтеза волокнообразующих полимеров. В табл. 5.1 приводятся значения кажущейся энергии активации ΔE d и константы скорости K d для некоторых инициаторов. При проведении синтеза ниже 85°С целесообразно применять ДАК. При более высоких температурах лучшие результаты дает использование пероксида бензоила и др.

Таблица 5.1. Кинетические характеристики некоторых инициаторов полимеризации


Реакцию полимеризации при температурах ниже 70°С целесообразно проводить, используя неорганические пероксиды.

Продолжительность стадии инициирования сокращается при увеличении количества свободных радикалов.

Для увеличения скорости распада инициаторов, например пероксидов, в реакционную смесь вводят "промоторы" - восстановители. Окислительно-восстановительные инициирующие системы широко используются для проведения синтеза различных карбоцепных полимеров. Инициирование процесса полимеризации путем применения окислительно-восстановительных систем характеризуется небольшим температурным коэффициентом (сравнительно малой кажущейся энергией активации).

Таким образом, под воздействием физических или химических факторов в системе появляются свободные, радикалы, имеющие, например, неспаренные p -электроны и обладающие вследствие этого высокой химической активностью. Соударения свободных радикалов приводят к возникновению ковалентной связи между ними с образованием неактивной молекулы. При взаимодействии свободного радикала с неактивной молекулой образуется продукт реакции, имеющий тоже один неспаренный электрон и обладающий почти той же активностью, что и исходный свободный радикал. Эти процессы могут быть иллюстрированы схемой

R * + R * → R: R; R * + М → R: М * .

Склонность к реакциям присоединения ограничивает время жизни свободных радикалов. Например, полупериод жизни радикала Н 3 С * составляет 10 -4 с. Однако сопряжение неспаренного p -электрона [например, в трифенилметиле (С 6 Н 5) 3 С * ] или же экранизация его заместителями, входящими в состав свободного радикала, например в дифенилпикрилгидразиле

резко повышает стабильность свободных радикалов.

В результате химического инициирования свободный радикал становится концевой группой растущей полимерной цепи.

Время, необходимое для зарождения цепи, называется индукционным периодом. Вещества, увеличивающие индукционный период, называются ингибиторами. Не все свободные радикалы, взаимодействуя с мономерами, инициируют реакцию. Часть их после взаимного столкновения дезактивируется. Отношение количества радикалов, присоединившихся к мономеру и инициирующих реакцию, к общему количеству всех образовавшихся радикалов называется эффективностью инициатора f э. Эффективность инициатора может быть оценена одним из трех методов:

  • сравнением скорости разложения инициатора и скорости образования полимерных молекул (эта методика требует точного измерения средней молекулярной массы полимера);
  • сравнением количества инициатора, соединенного с полимером, с количеством разложившегося инициатора;
  • применением ингибитора, обрывающего кинетические цепи.

Например, применение дифенилпикрилгидразила позволяет осуществить обрыв цепи по схеме


Задача. Рассчитать эффективность 2,2"-азо-бис -изобутиронитрила, если при полимеризации стирола исходная концентрация инициатора составляла 1,1%, а за 20 мин реакции на 100 г мономера выделилось 80 см 3 азота (в пересчете на нормальные условия). Степень превращения мономера достигла 5%. Молекулярная масса полученного полимера 2500 (определена осмометрическим методом).

Решение. При распаде молекулы инициатора образуется два свободных радикала и выделяется молекула азота. Рассчитываем число молей инициатора в начале реакции на 100 г мономера:

[I] 0 = 1,1/164 = 0,007 = 7 · 10 -3 .

Количество выделившегося азота составит

80/(22,4 · 1000) = 3,5 · 10 -3 .

Таким образом, за 20 мин реакции разложилось 3,5 · 10 -3 моль инициатора и, следовательно, образовалось 7 · 10 -3 моль радикалов. При степени превращения 5% и средней молекулярной массе 2500 количество образовавшихся молей полимера составляет

5/2500 = 2 · 10 -3 .

Примем, что все кинетические цепи закончились рекомбинацией радикалов и, следовательно, на 1 моль полимера расходовался 1 моль инициатора. Отсюда находим эффективность инициатора f э:

f э = 2,0 · 10 -3 /(3,5 · 10 -3) = 0,6.

В общем случае скорость распада инициатора V 0 = K d [I].

Для большинства применяемых инициаторов f э находится в пределах 0,3-0,8, т.е. практически всегда f э f э изменяется в зависимости от среды: природы и количества инициатора, мономера, растворителя и т.д.

Например, при инициировании полимеризации акрилонитрила динитрилом азодиизомасляной кислоты в диметилформамиде и 51,5%-м водном растворе NaCNS величина K d f э во втором случае оказывается существенно меньшей вследствие большого проявления "эффекта клетки" (возрастает вязкость среды, а также проявляются специфические сольватационные эффекты).

Многочисленными экспериментальными данными установлено, что при постоянной концентрации мономера скорость полимеризации пропорциональна корню квадратному из концентрации инициатора ("правило квадратного корня"):

где К - суммарная константа скорости полимеризации; [М] - концентрация мономера; [I] - концентрация инициатора;

где K d - константа скорости распада инициатора; К p - константа скорости роста полимерной цепи; К 0 - константа скорости обрыва цепи.

Вопрос. Гетерофазная полимеризация винилхлорида в присутствии пероксида бензоила протекает в изотермических условиях в 6-8 раз медленнее, чем в присутствии динитрила азодиизомасляной кислоты. Объясните возможную причину этого явления.

Ответ . Пероксид бензоила очень мало растворим в воде. Поэтому скорость инициирования достигает заметной величины лишь после того, как концентрация частиц инициатора в дисперсии окажется достаточно большой [см. уравнение (5.3)]. Динитрил азодиизомасляной кислоты лучше растворяется в воде, в связи с этим индукционный период процесса полимеризации, который определяет общую продолжительность процесса, в этом случае будет меньше.

Продолжение (рост) цепи. Реакциями продолжения (роста) кинетической цепи называются элементарные

стадии цепной реакции, протекающие с сохранением свободной валентности и приводящие к расходованию исходных веществ и образованию продуктов реакции. При полимеризации эта последовательность реакций обусловливает рост полимерной цепи:


Рост цепи - быстро протекающая стадия процесса полимеризации, описываемая уравнением (5.3). Скорость полимеризации возрастает также при увеличении концентрации мономера в реакционной среде.

Обрыв цепи. Обрывом кинетической цепи называется стадия цепного процесса, приводящая к исчезновению свободной валентности. Обрыв кинетической цепи может происходить:

в результате рекомбинации, т.е. взаимодействия двух одинаковых или различных свободных радикалов,

или диспропорционирования, т.е. передачи протона от одного радикала к другому, с потерей активности продуктов реакции, т.е.


Энергия активации первой реакции - рекомбинации - близка к нулю и, во всяком случае, не превышает 0,5-1,5 кДж/моль, тогда как энергия активации диспропорционирования достигает значений 16-18 кДж/моль.

Прекращение роста макромолекулы может происходить в результате рекомбинации и диспропорционирования макрорадикалов.

Вместе с тем такой же эффект наблюдается при встрече полимерного радикала (макрорадикала) с неактивной молекулой. Прекращение роста макромолекулы в результате переноса неспаренного электрона инертной молекуле называется передачей кинетической цепи ("радикал отропией"). Этот процесс может приводить к присоединению атома водорода к растущей полимерной цепи:

В роли RH могут выступать молекулы инициатора, растворителя, мономера, неактивного полимера или макрорадикала и др. Константы скоростей этих реакций будут соответственно К п i , K п s , K п м, K п п.

Вопрос. В процессе свободнорадикальной полимеризации наряду с линейными макромолекулами образуются разветвленные. Напишите вероятную схему образования таких разветвлений при полимеризации винилацетата в присутствии пероксида бензоила.

Ответ. При высоких степенях превращения образовавшиеся макромолекулы (и макрорадикалы) могут подвергаться воздействию подвижных свободных радикалов. Наиболее уязвимой частью макромолекулы являются атомы водорода у третичных углеродных атомов:


Обрыв кинетической цепи приводит к уменьшению степени полимеризации образующегося высокомолекулярного соединения. Иногда для регулирования скорости процесса и молекулярной массы полимеров в реакционную смесь вносят специальные вещества (гидрохинон, нитробензол и др.), называемые ингибиторами полимеризации. Их действие основано на связывании

активных центров кинетической цепи. Длина кинетической цепи v составляет

где V р и V t - скорости роста и обрыва цепи соответственно.

С помощью ингибиторов полимеризации можно варьировать в относительно широких пределах выход и свойства образующегося полимера (средняя молекулярная масса, степень полидисперсности).

Вопрос. В начальные периоды свободнорадикальной полимеризации образуются полимеры с максимальной молекулярной массой. По мере увеличения степени превращения мономера (выхода полимера) молекулярная масса его обычно уменьшается. Объясните вероятную причину этого явления.

Ответ . По мере увеличения степени превращения число растущих кинетических цепей в реакционной среде возрастает, что обусловливает повышение вероятности рекомбинационных процессов.

Полимеризация является сложным процессом и часто не может быть описана одним стехиометрическим уравнением, так как в ряде случаев обрыв цепей приводит к появлению некоторых побочных продуктов. Однако при достаточно большой длине кинетической цепи полимеризацию можно с достаточным приближением описать одним стехиометрическим уравнением. Скорость цепной реакции v равна произведению скорости инициирования цепи v i и длины кинетической цепи v :

При этом v = (1 - β)/β, где β - вероятность обрыва цепи на каждой стадии роста. Длину кинетической цепи v можно вычислить исходя из соотношения

Задача. Определить значение К р /К

может быть определено из уравнения стационарной скорости полимеризации, хорошо описывающего процесс в начальной его стадии [уравнение (5.3)]. После преобразования уравнений (5.3) и (5.4) получаем

ln([M] 0 /[M] t ) = (K p /K

)V i t . В присутствии акцепторов свободных радикалов процесс замедляется (ингибируется). Если С инг - концентрация ингибитора, то скорость реакции инициирования может быть рассчитана из зависимости

V i = C инг t i .

Согласно этой эмпирической зависимости, для любой произвольно выбранной концентрации ингибитора (например, 0,2 моль/дм 3) можно рассчитать соответствующее значение t , а следовательно, и скорость инициирования:

  • t = 2 · 10 -5 + 2857 · 0,2 = 571 мин;
  • V i = 1 · 10 -1 /571 = 5,83 · 10 -6 моль/(дм 3 · с).

Для двух моментов времени ≥t i можно вычислить значение К р /К

= = 0,25.

В соответствии с уравнениями (5.3) и (5.4) имеем

где f э - эффективность инициатора; K d - константа скорости разложения инициатора; [М] - концентрация мономера; [I] - концентрация инициатора.

Ранее отмечалось, что величины f э и K d можно измерять раздельно. Экспериментально определяются также V p , [I], [M]. Найдя таким образом K

= 2,34 · 10 -7 .

При малых степенях конверсии суммарная скорость полимеризации V удовлетворительно описывается уравнением (5.8). Температурная зависимость V , характеризуемая кажущейся энергией активации процесса синтеза, описывается равенством

ΔE об = 1/2ΔE i - ΔE р + 1/2ΔE o ,

где ΔE i , ΔE p и ΔE o - кажущиеся энергии активации стадий инициирования, роста и обрыва цепи соответственно.

Для большинства виниловых мономеров

  • ΔE i = 130 ± 10 кДж/моль; ΔE p = 25 + 5 кДж/моль;
  • ΔЕ o = 6 ± 2 кДж/моль.

Это означает, что с повышением температуры во всех случаях скорость реакции полимеризации возрастает.

Длина кинетической цепи v в изотермических условиях синтеза определяется только природой мономера.

Радикальная полимеризация, как правило, представляет собой разновидность цепных реакций. Такие реакции протекают под влиянием свободных радикалов, образующихся в начале процесса и реагирующих далее с нейтральными молекулами с образованием новых реакционноспособных радикалов.

Цепная полимеризация может инициироваться методами, известными для газофазных цепных реакций, в том числе ультрафиолетовым излучением. Один акт инициирования цепной полимеризации ведет к соединению друг с другом тысяч мономерных молекул. Другими признаками радикального цепного характера реакции полимеризации являются влияние примесей и формы реакционного сосуда на ее скорость, специфический s-образный вид кинетической кривой (зависимость степени превращения мономера в полимер от времени, рис. 5).

Рис. 5. Типичная кинетическая s-образная кривая полимеризации

Радикальная полимеризация имеет три характерные для цепных реакций стадии: инициирование, рост и обрыв цепи.

Для инициирования
реакции необходимо, чтобы в системе осуществилось получение (генерирование) свободных радикалов в результате теплового воздействия (термическое инициирование), светового (фотоинициирование), радиоактивного облучения (радиационное инициирование), введение химических инициаторов (химическое радикальное инициирование) и др. Термическое инициирование применяется редко, так как связано с большими затратами энергии, и при этом плохо поддаются регулированию как сам процесс реакции, так и свойства готового полимера. Фотоинициирование применяется главным образом для изучения механизма реакций полимеризации. Оно состоит в возбуждении молекулы мономера в результате поглощения кванта света и в генерировании затем свободных радикалов. В отличие от термической полимеризации скорость фотополимеризации не зависит от температуры, так как энергия активации ее значительно ниже. Скорость растет с увеличением интенсивности облучения. В этом случае подтверждением цепного характера реакции является протекание полимеризации после удаления источника света (рис. 6).

Рис. 6. Скорость полимеризации бутадиена: 1 - при освещении, 2 – после прекращения освещения

Радиационная полимеризация в принципе аналогична фотополимеризации. Скорость ее также растет с увеличением интенсивности облучения и не зависит от температуры. Скорость радиационной и фотополимеризации может быть увеличена добавлением веществ, которые легко распадаются под действием радиационного излучения или света (так называемые сенсибилизаторы полимеризации), например полигалогениды - CCl4, C2Cl6 и др.

Термический, фото - и радиационный способы инициирования цепной реакции полимеризации либо мало эффективны, либо сопровождаются протеканием различных побочных явлений (разветвление, деструкция цепей и т. д.). Поэтому на практике чаще всего применяется химическое инициирование, которое осуществляется специально вводимыми в систему легко распадающимися на радикалы веществами - инициаторами. Наиболее распространены среди них перекиси, азо - и диазосоединения. Распад этих соединений на радикалы может быть осуществлен различными путями, включая нагревание, фотохимическое разложение и др. Например, при легком нагревании перекись бензоила распадается по схеме

а гидроперекись изопропиленбензола так:

Динитрил азоизомасляной кислоты (азо-бис-изобутиронитрил) распадается с выделением азота:

Свободные радикалы (R·) легко реагируют с молекулой мономера:

которая становится свободным радикалом и реагирует со следующей молекулой мономера, и таким образом осуществляется реакция роста цепи. Поскольку стабильность радикалов, образующихся при распаде перекисей, азосоединений и других инициаторов, разная, то и скорость их реакции с молекулами мономера, а следовательно, и скорость полимеризации различны. Для облегчения распада инициаторов и снижения энергии активации стадии инициирования в реакцию вводят восстановители (амины и другие соединения, соли металлов переменной валентности).

Стадия роста цепи требует значительно меньшей энергии активации - 25,1-33,5 кДж/моль (6-8 ккал/моль), чем стадия инициирования - 84-126 кДж/моль (20-30 ккал/моль), и представляет взаимодействие растущих свободных радикалов с молекулами мономера, что приводит в итоге к образованию макромолекулы полимера:

Нейтральная макромолекула образуется на стадии обрыва цепи, энергия активации которой 8-17 кДж/моль (2-4 ккал/моль):

Такой обрыв цепи происходит в результате столкновения двух растущих макрорадикалов (рекомбинация). Возможно также диспропорционирование таких радикалов с образованием двух нейтральных молекул:

Причиной обрыва цепи может быть также присоединение к макрорадикалу низкомолекулярных веществ, присутствующих в системе (инициаторы, ингибиторы и др.). Время жизни растущих радикалов мало (обычно несколько секунд). По мере роста радикалов увеличивается вязкость системы, и вследствие уменьшения подвижности макрорадикалов скорость обрыва цепи путем рекомбинации снижается. Время жизни радикалов возрастает также при снижении температуры. Рост времени жизни макрорадикалов при увеличении вязкости системы приводит к интересному явлению - ускорению полимеризации на поздних стадиях (гель-эффект) вследствие увеличения концентрации макрорадикалов.

Как можно видеть из приведенных схем реакций роста и обрыва цепи, образуются макромолекулы полимера разной молекулярной массы. Широкий разброс значений молекулярной массы для образца полимера обычно приводит к ухудшению его механических свойств. Поэтому при получении полимера стремятся регулировать его молекулярную массу, что можно осуществить путем направленного изменения скорости роста цепи.

Для этой цели пользуются реакцией передачи цепи, которая заключается в том, что вводимое в систему вещество - регулятор - обрывает растущую цепь, но при этом само становится свободным радикалом и начинает новую кинетическую цепь реакции полимеризации. Таким образом, в данном случае обрывается материальная цепь, а кинетическая продолжается, в то время как в обычной реакции обрыва происходит обрыв как кинетической, так и материальной цепи. Роль агентов передачи цепи могут выполнять растворитель (особенно активны галогенсодержащие соединения, например СС14), мономер или специально вводимые вещества (регуляторы), например меркаптаны.

(обрыв цепи)

(начало новой цепи)

или

Во всех случаях происходит рост новой макромолекулы полимера на каждый акт передачи цепи. Передача цепи может произойти также на молекулу полимера. В этом случае образуется разветвленная макромолекула. Повышение температуры и увеличение количества агента передачи цепи (например, галогенсодержащих углеводородов) приводят к резкому возрастанию скорости реакции передачи цепи, и эта реакция подавляет другие стадии полимеризации, так что образуются индивидуальные низкомолекулярные вещества, которые можно разделить (реакция теломеризации). Они содержат концевые группы из продуктов расщепления агента передачи цепи и являются активными в различных химических реакциях, в частности при получении новых полимеров.

Низкомолекулярные вещества, которые в результате реакции с радикалами мономеров предотвращают рост макромолекул или замедляют его, называются ингибиторами
или замедлителями. Они широко используются для предотвращения преждевременной полимеризации или снижения ее скорости, для получения полимеров желательной молекулярной массы и более регулярной структуры. Такими веществами являются бензохинон, нитробензол и др. (рис. 7).

Рис. 7. Термическая полимеризация стирола при 100°С в присутствии ингибиторов и замедлителей:

1 - без добавок; 2- 0,1% бензохинона (ингибитор); 3 - 0,2% нитробензола (ингибитор); 4- 0,5% нитробензола (замедлитель)

Замедлитель выполняет двоякую роль: уменьшает концентрацию радикалов и время их жизни, что приводит к снижению длины полимерной цепи. Ингибитор не влияет на скорость полимеризации, но предотвращает начало инициирования цепи, увеличивая индукционный период на кинетической кривой полимеризации. Величина индукционного периода обычно пропорциональна количеству введенного ингибитора. Одно и то же вещество может выступать и как ингибитор, и как замедлитель, и как регулятор полимеризации - в зависимости от природы полимеризуемого мономера. В этом отношении особенно интересен кислород, который, например, замедляет полимеризацию винилацетата и ускоряет полимеризацию стирола. При больших давлениях и высоких температурах кислород способствует полимеризации этилена, что используется в промышленном производстве полиэтилена высокого давления. Кислород образует перекиси или гидроперекиси при взаимодействии с мономерами или растущими цепями. В зависимости от стабильности эти промежуточные перекиси или гидроперекиси могут либо увеличивать концентрацию радикалов и ускорять полимеризацию, либо дезактивировать имеющиеся радикалы и замедлять или даже ингибировать полимеризацию.

Рассмотрение кинетических закономерностей радикальной полимеризации дало возможность сделать ряд важных в практическом и теоретическом отношении выводов о влиянии различных факторов на этот процесс. Установлено, что скорость инициирования пропорциональна концентрации инициатора, а общая скорость полимеризации в стационарном периоде (когда скорость инициирования равна скорости обрыва цепи и, следовательно, общая скорость равна скорости роста цепи) пропорциональна квадратному корню из концентрации инициатора и первой степени концентрации мoномера u = K[M]1/2. Что касается степени полимеризации, т. е. молекулярной массы, то она обратно пропорциональна квадратному корню из концентрации инициатора n = K`[M]/1/2. Физический смысл этого положения заключается в том, что с ростом концентрации инициатора растет и число радикалов, образующихся в системе. Эти радикалы реагируют с большим числом молекул мономера и тем увеличивают скорость их превращения в растущие макрорадикалы. Однако при общем увеличении концентрации радикалов повышается и вероятность их столкновения друг с другом, т. е. обрыва цепи полимеризации. Это приводит к снижению средней молекулярной массы полимера.

Аналогичным образом можно рассмотреть влияние температуры на кинетику радикальной полимеризации. Обычно скорость полимеризации возрастает в 2-3 раза при повышении температуры на 10°. Повышение температуры увеличивает скорость инициирования полимеризации, так как облегчает распад на радикалы инициаторов и их реакцию с молекулами мономера. Вследствие большей подвижности малых радикалов с повышением температуры увеличивается вероятность их столкновения друг с другом (обрыв цепи путем диспропорционирования или рекомбинации) или с низкомолекулярными примесями (ингибиторами). Во всех случаях молекулярная масса полимера снижается, т. е. средняя степень полимеризации уменьшается с ростом температуры. Таким образом повышается количество низкомолекулярных фракций полимера в общем балансе распределения макромолекул по их молекулярным массам, возрастает доля побочных реакций, приводящих к образованию разветвленных молекул, появляется химическая нерегулярность построения цепи полимера вследствие увеличения доли типов соединения мономера «голова к голове» и «хвост к хвосту».

Лекция 4. Радикальная полимеризация.

Радикальная полимеризация протекает по цепному механизму .

В результате каждого элементарного акта происходит образование нового радикала, к которому присоединяется новая нейтральная молекула, т.е. кинетическая цепь превращается в материальную .

Основные стадии радикальной полимеризации:

инициирование

рост цепи

обрыв цепи

передача цепи

1 . Инициирование заключается в образовании свободных радикалов под действием:

– тепла (термическое инициирование);

– света (фотоинициирование);

– ионизирующих излучений (радиационное инициирование);

– химических инициаторов (химическое инициирование)

Первые три способа малоэффективны, т.к. сопровождаются различными побочными реакциями (разветвление, деструкция и т.д.). Чаще всего используют химическое инициирование, при котором образование свободных радикалов происходит вследствие термического и фотохимического распада различных соединений, содержащих нестабильные (лабильные) связи, а также в результате ОВР. Наиболее распространёнными инициаторами являются: пероксиды, гидропероксиды, изо- и диазосоединения, перэфиры, ацилпероксиды.


Пример .

а) пероксид бензоила

t распада = 70 - 80˚С

Эффективность инициирования f = 0,7 - 0,9

б) азобисизобутиронитрил

t распада = 60 - 75˚С

Эффективность инициирования f = 0,5 - 0,7

в) персульфат калия

t распад = 40 - 50˚С

Выбор инициатора обусловлен его растворимостью в мономере или растворителе и температурой, при которых может быть достигнута определённая скорость получения свободных радикалов.

Радикал, образующийся при инициировании, присоединяется к двойной (=) связи мономера и начинает реакционную цепь.

Поскольку стабильность радикалов, образующихся при распаде пероксидов, азосоединений и других инициаторов разная, скорость их реакции с молекулами мономера, а следовательно, и скорость полимеризации различны. Для облегчения распада инициаторов и снижения энергии активации стадии инициирования в реакцию вводят восстановители (амины, соли металлов переменной степени окисления).

С целью понижения (от 146 до 42 - 84 кДж/моль), облегчения распада инициаторов используют окислительно-восстановительные системы .

Например:

https://pandia.ru/text/80/211/images/image008_31.gif" width="231" height="104 src=">

Окислительно-восстановительные системы применяют в водных средах или при полимеризации в эмульсии . Широкое распространение их в промышленности производства полимеров связано с существенным снижением энергии активации распада инициаторов на свободные радикалы и уменьшением таким образом энергетических затрат в производственных условиях.

2. Рост цепи – заключается в последовательном присоединении молекул мономера к образующемуся активному центру с передачей его на конец цепи.

Развитие кинетической цепи сопровождением образованием материальной цепи.

(маленькая)

Константа скорости реакции kp = 102 – 104 (большая)

Энергия активации и константа скорости реакции зависят от природы мономеров, параметров реакционной среды.

3. Обрыв цепи – происходит в результате гибели активных центров.

Обрыв цепи приводит к обрыву материальной и кинетической цепи.

Энергия активации обрыва цепи определяется энергией активации диффузии радикалов.

Обрыв может быть при любой длине растущего макрорадикала. При этом получаются макромолекулы разной длины.

Обрыв чаще всего происходит двумя способами: путем рекомбинации и диспропорционирования .

Еакт ≤ 4,2 кДж/моль

Eакт = 12,6-16,8 кДж/моль

Возможен также обрыв при взаимодействии растущих радикалов с низкомолекулярными веществами, присутствующими в системе.

Понизив температуру ↓

Понизить скорость обрыва цепи можно

повысив вязкость

4. Передача цепи – происходит путём отрыва растущим радикалом атома или группы атомов от какой-то молекулы (передатчика цепи). При этом:

– растущий радикал превращается в валентно - ненасыщенную молекулу;

– новый радикал развивает кинетическую цепь

Таким образом, реакция передачи цепи заключается в том, что вводимое в систему вещество – регулятор- обрывает растущую цепь, но при этом само становится свободным радикалом и начинает новую кинетическую цепь полимеризации.


Повышение температуры и увеличение количества агента передачи цепи (например, галогенсодержащих углеводородов) приводят к резкому возрастанию скорости реакции передачи цепи. Эта реакция подавляет другие стадии полимеризации, так, что образуются индивидуальные низкомолекулярные вещества, которые можно разделить(реакция теломеризации). Они содержат концевые группы из продуктов расщепления агента передачи цепи и являются активными в различных химических реакциях, в частности для получения новых полимеров.

Теломеры: олигомеры, имеющие на концах молекул реакционноспособные группы.

и т. д.

Так, теломеризация этилена в среде тетрахлорида углерода протекает с образованием индивидуальных продуктов (тетрахлорпентан, тетрахлоргептан и др.)

Пример . Передача цепи через:

а) молекулу мономера

б) молекулу растворителя

начало новой цепи

в) специально вводимые вещества (регуляторы), например, меркаптаны.

km , ks – константы скорости передачи цепи.

При взаимодействии растущего радикала с молекулой передатчика цепи прекращается рост материальной цепи, т.е. снижается молекулярная масса образующегося полимера; кинетическая цепь сохраняется.

Способность к участию в передаче цепи при радикальной полимеризации характеризуется константой передачи цепи на мономер Cm , на растворитель Cs, на инициатор Cu.

Cm = (0,1 - 5)*10-4 – маленькое значение

Например, при полимеризации винилацетата Cm = 2∙10-3

Из растворителей высокое значение Cs у . Так при полимеризации стирола Cs = 9∙10-3

Кинетика радикальной полимеризации

Скорость процесса описывается уравнением: https://pandia.ru/text/80/211/images/image026_11.gif" width="44" height="41"> - скорость исчезновения мономера

И - скорость инициирования и роста цепи

При образовании высокомолекулярного полимера число молекул мономера, участвующих в стадии инициирования намного меньше, чем в стадии роста, поэтому можно пренебречь.

Замерить трудно. Для стационарного процесса скорость возникновения радикала равна скорости их гибели, а скорость изменения концентрации радикалов ()

Для стационарного процесса уравнение скорости полимеризации примет вид:

концентрация инициатора (известна и задается до начала реакции)

Из уравнения следует, что скорость полимеризации зависит от скорости инициирования в степени 0,5, т.е..gif" width="49" height="25"> в раз. Это объясняется бимолекулярным механизмом отрыва цепи.

При термическом инициировании скорость полимеризации V зависит от соотношения трёх констант скорости реакции

Типичная кинетическая кривая, описывающая конверсию мономера (т.е. превращение мономера в полимер в результате полимеризации) в зависимости от времени, имеет S-образный вид.

Рис.1 Типичная кинетическая кривая цепной радикальной полимеризации:

1 – ингибирование; 2 – ускорение полимеризации (скорость растет со временем); 3 – стационарный период (скорость полимеризации постоянная); 4 – замедление полимеризации (скорость уменьшается со временем)

Как видно из рис. 1 на кривой можно выделить пять участков по значениям скоростей основной реакции превращения мономера в полимер в результате полимеризации: 1 – участок ингибирования , где концентрация свободных радикалов мала. И они не могут начать цепной процесс полимеризации; 2 – участок ускорения полимеризации , где начинается основная реакция превращения мономера в полимер, причем скорость растет; 3 – участок стационарного состояния, где происходит полимеризация основного количества мономера при постоянной скорости (прямолинейная зависимость конверсии от времени); 4 – участок замедления реакции , где скорость реакции уменьшается в связи с убылью содержания свободного мономера; 5 – прекращение основной реакции после исчерпания всего количества мономера.

Наибольший интерес представляет стационарный период реакции полимеризации, когда при постоянной скорости происходит полимеризация основной массы мономера. Это возможно, когда количество вновь образующихся свободных радикалов (стадия инициирования) равно количеству исчезающих макрорадикалов (стадия обрыва) реакционной и материальной цепей.

Степень полимеризации n (т.е. число звеньев мономерных единиц в одной среднестатистической макромолекуле) по определению пропорциональна скорости реакции роста цепи и обратно пропорциональна скорости реакции обрыва цепи, так как нейтральная макромолекула образуется в результате столкновения двух растущих макрорадикалов.

n = υp /υобр = kp[M] / kобр2 = kp[M] / kобр = kn / = knI / [I]0,5

Иными словами, степень полимеризации и, следовательно, средняя молекулярная масса полимера при свободнорадикальной полимеризации обратно пропорциональна квадратному корню из концентрации инициатора.

Влияние различных факторов на процесс радикальной полимеризации.

1. Влияние температуры

С повышением температуры увеличивается скорость реакции образования активных центров и реакции роста цепи. Таким образом, повышается суммарная скорость образования полимера. Обычно скорость полимеризации возрастает в 2-3 раза при повышении температуры на 10 ˚С. Однако при общем увеличении концентрации радикалов увеличивается и вероятность их столкновения друг с другом (обрыв цепи путем диспропорционирования или рекомбинации) или с низкомолекулярными примесями. В результате молекулярная масса полимера в целом уменьшается (средняя степень полимеризации уменьшается с ростом температуры), увеличивается доля низкомолекулярных фракций в полимере. Возрастает число побочных реаций, приводящих к образованию разветвленных молекул. Увеличивается нерегулярность при построении цепи полимера вследствие возрастания доли типов соединения мономера «голова к голове» и «хвост к хвосту».

2. Влияние концентрации инициатора.

С повышением концентрации инициатора число свободных радикалов увеличивается, возрастает число активных центров, увеличивается суммарная скорость полимеризации.

Однако при общем увеличении концентрации радикалов увеличивается и вероятность их столкновения друг с другом, т.е. обрыва цепи, что приводит к снижению молекулярной массы полимера.

3. Влияние концентрации мономера.

При полимеризации в среде растворителя суммарная скорость полимеризации и молекулярная масса образующегося полимера увеличивается с повышением концентрации мономера.

При полимеризации в инертном растворителе, не участвующем в реакции, скорость полимеризации равна (часто x = 1,5).

Большинство растворителей участвуют в полимеризации (в реакции передачи цепи). Поэтому получаются гораздо более сложные зависимости.

4. Влияние давления.

Давление высокое и сверхвысокое 300-500 МПа (3000-5000 ат) и выше значительно ускоряет полимеризацию.

Пример. Полимеризация метилметакрилата в присутствии https://pandia.ru/text/80/211/images/image041_1.jpg" align="left" width="217" height="161">Рис.2 Термическая полимеризация стирола при 100 ˚С в присутствии ингибиторов и замедлителей:

1 – без добавок; 2- 0,1% бензохинона (ингибитор); 3 – 0,2% нитробензола (ингибитор); 4 – 0,5% нитробензола (замедлитель)

Для регулирования процесса полимеризации применяют ингибиторы и замедлители полимеризации. Ингибиторы – низкомолекулярные вещества, которые меняют длительность индукционного периода, замедляя его. Это часто необходимо делать в технологии производства полимеров для предотвращения преждевременной полимеризации в неконтролируемых условиях.

Ингибиторы: хиноны, ароматические амины, нитросоединения, фенолы, органические соли , , , и т.д.

Пример : гидрохинон

Хинон взаимодействует со свободными радикалами, превращая их в неактивные продукты. Гибель радикалов увеличивает длину индукционного периода.

Наряду с ингибиторами, позволяющими полностью остановить полимеризацию, существуют замедлители полимеризации , которые только уменьшают её скорость. Замедлитель выполняет двойную роль: снижает концентрацию радикалов и уменьшает время их жизни, что приводит к снижению длины полимерной цепи.

Ингибитор не влияет на скорость полимеризации, но предотвращает начало инициирования цепи, увеличивая индукционный период на кинетической кривой полимеризации. Длительность индукционного периода обычно пропорциональна количеству введенного ингибитора. Одно и то же вещество может выступать и как ингибитор, и как замедлитель, и как регулятор полимеризации в зависимости от природы полимеризуемого мономера. Например, кислород, который замедляет полимеризацию винилацетата и ускоряет полимеризацию стирола. При больших давлениях и высоких температурах кислород способствует полимеризации этилена. Это явление используют при промышленном производстве полиэтилена высокого давления. Кислород образует пероксиды или гидропероксиды при взаимодействии с мономерами или растущими цепями.

гидропероксид

пероксид

В зависимости от стабильности промежуточных пероксидов или гидропероксидов они могут либо увеличивать концентрацию радикалов и ускорять полимеризацию, либо дезактивировать имеющиеся радикалы и замедлять или даже ингибировать полимеризацию. Рис.1.3 с.28 кулезнев

Пример: ароматические нитро- и нитрозосоединения.

Регуляторы полимеризации вызывают преждевременный обрыв материальной цепи , снижая молекулярную массу полимера пропорционально введенному количеству регулятора. Примером их являются меркаптаны, в том числе додецилмеркаптан. Из-за большой длины углеводородной цепи его молекулы недостаточно активны и расходуются медленно.

Примеси в мономере и растворителе : степень их влияния на процесс полимеризации определяется их химической природой и реакционной способностью по отношению к активным частицам.

Для исключения влияния этих факторов берут для синтеза мономеры и растворители «кинетической чистоты», иногда вместо https://pandia.ru/text/80/211/images/image050_4.gif" width="23" height="17">, .

Способы проведения полимеризации

Радикальную полимеризацию проводят в блоке (массе), растворе, эмульсии, суспензии и газовой фазе. При этом процесс может протекать в гомогенных или гетерогенных условиях. Кроме того, фазовое состояние исходной реакционной смеси может также меняться в ходе полимеризации.

1. Полимеризация в блоке (в массе )

Полимеризацию проводят без растворителя. Из-за высокой экзотермичности процесс полимеризации трудно поддаётся регулированию. В ходе реакции повышается вязкость и затрудняется отвод тепла, вследствие чего возникают местные перегревы, приводящие к деструкции полимера, неоднородности его по молекулярной массе. Достоинством полимеризации в массе является возможность получения полимера в форме сосуда, в котором проводится процесс без какой-либо дополнительной обработки.

2. Полимеризация в растворе

В отличие от полимеризации в блоке в данном случае отсутствуют местные перегревы, так как тепло реакции снимается растворителем, выполняющим также роль разбавителя. Уменьшается вязкость реакционной системы, что облегчает её перемешивание.

Однако возрастает роль (доля) реакций передачи цепи, что приводит к понижению молекулярной массы полимера. Кроме того, полимер может быть загрязнён остатками растворителя, который не всегда удаётся удалить из полимера.

Существует два способа проведения полимеризации в растворе.

а) Применяют растворитель, в котором растворяется и мономер, и полимер. Получаемый полимер используют непосредственно в растворе или выделяют его осаждением или испарением растворителя.

б) В растворителе, используемом для полимеризации, растворяется мономер, но не растворяется полимер. Полимер по мере образования выпадает в твердом виде и может быть отделен фильтрованием.

3. Полимеризация в суспензии (бисерная или гранульная)

Широко используется для синтеза полимеров. При этом мономер диспергируют в Дисперсия" href="/text/category/dispersiya/" rel="bookmark">дисперсии достигается механическим перемешиванием и введением в реакционную систему специальных добавок – стабилизаторов. Процесс полимеризации осуществляют в каплях мономера, которые можно рассматривать как микрореакторы блочной полимеризации. Применяют инициаторы, растворимые в мономере.

Достоинством этого процесса является хороший отвод тепла, недостатком - возможность загрязнения полимера остатками стабилизатора

4. Полимеризация в эмульсии (эмульсионная полимеризация)

При эмульсионной полимеризации дисперсионной средой является вода. В качестве эмульгаторов используют различные мыла. Для инициирования чаще всего применяют водорастворимые инициаторы, окислительно - восстановительные системы.

Полимеризация может протекать в молекулярном растворе мономера в , на поверхности раздела капля мономера - , на поверхности или внутри мицелл мыла, на поверхности или внутри образующихся полимерных частиц, набухших в полимере.

Достоинствами процесса являются: высокая скорость, образование полимера большой молекулярной массы, лёгкость отвода тепла. Однако в результате эмульсионной полимеризации образуется большое количество сточных вод, требующих специальной очистки. Также необходимо удаление остатков эмульгатора из полимера.

5. Газофазная полимеризация

При газофазной полимеризации мономер (например, этилен) находится в газообразном состоянии. В качестве инициаторов могут использоваться и пероксиды. Процесс протекает при высоком p .

Выводы:

Свободнорадикальная полимеризация – один из видов цепных процессов синтеза полимеров. Поляризация исходных молекул мономера облегчает их реакции с радикалами инициатора при химическом инициировании или при физических методах генерации радикалов. Электроноакцепторные заместители способствуют большей стабильности радикалов мономера и растущих цепей. Процесс радикальной полимеризации можно регулировать различными приемами как по скорости конверсии мономера, так и по величине молекулярной массы полимера. Для этого используют добавки низкомолекулярных веществ, выполняющих функции ингибиторов или замедлителей реакции, а также осуществляющих передачу реакционной цепи или снижающих энергию активации распада инициаторов на радикалы. Знание закономерностей свободнорадикальной полимеризации позволяет управлять структурой полимера, а следовательно, и его физическими и механическими свойствами. Благодаря простоте этот способ получения полимеров нашел широкое применение в промышленности.